top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mechanics and physics of creep, shrinkage, and durability of concrete : a tribute to Zdeněk P. Bažant : proceedings of the Ninth International Conference on Creep, Shrinkage, and Durability Mechanics (CONCREEP-9), September 22-25, 2013 Cambridge, Massachusetts / / sponsored by IA-CONCREEP, Engineering Mechanics Institute of ASCE, American Concrete Institute, Concrete Sustainability Hub at MIT, Groupement de recherche international "multi-scale materials, under the nanoscope" of CNRS ; edited by Franz-Josef Ulm, Hamlin M. Jennings, Roland Pellenq
Mechanics and physics of creep, shrinkage, and durability of concrete : a tribute to Zdeněk P. Bažant : proceedings of the Ninth International Conference on Creep, Shrinkage, and Durability Mechanics (CONCREEP-9), September 22-25, 2013 Cambridge, Massachusetts / / sponsored by IA-CONCREEP, Engineering Mechanics Institute of ASCE, American Concrete Institute, Concrete Sustainability Hub at MIT, Groupement de recherche international "multi-scale materials, under the nanoscope" of CNRS ; edited by Franz-Josef Ulm, Hamlin M. Jennings, Roland Pellenq
Pubbl/distr/stampa Reston, Virginia : , : American Society of Civil Engineers, , [2013]
Descrizione fisica 1 online resource (515 p.)
Disciplina 624.1/834
Altri autori (Persone) BažantZ. P
UlmF.-J (Franz-Josef)
JenningsHamlin
PellenqRoland
Soggetto topico Concrete - Creep
Concrete - Expansion and contraction
Soggetto genere / forma Electronic books.
ISBN 0-7844-7796-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Keynote Lectures""; ""Progress in Creep and Shrinkage Prediction Engendered by Alarming Bridge Observations and Expansion of Laboratory Database""; ""Structure and Small Angle Scattering of Polydisperse Granular Porous Materials: A Fingerprint for Cement Paste""; ""Nanoscale Numerical Study of C-S-H Precipitation and Gelation""; ""The Counteracting Effects of Capillary Porosity and of Unhydrated Clinker Grains on the Macroscopic Strength of Hydrating Cement Paste: A Multiscale Model""
""Creep Properties of Cementitious Materials from Indentation Testing: Significance, Influence of Relative Humidity, and Analogy Between C-S-H and Soils""""A Depinning Model for Creep and Plasticity of Disordered Materials""; ""Molecular and Meso-Scale Simulations and Characterization""; ""NANO-CREEP of Synthetic CSH Produced using 1.5 and 0.7 CAO/SIO2 Mixture Ratios""; ""Applying Tools from Glass Science to Study Calcium-Silicate- Hydrates""; ""Mechanical Behaviour of Ordered and Disordered Calcium Silicate Hydrates under Shear Strain Studied by Atomic Scale Simulations""
""Hydrothermal and Mechanical Stability of Metal-Organic Frameworks""""NMR Investigations of Water Retention Mechanism by Cellulose Ethers in Cement-Based Materials""; ""Water Sorption Hysteresis in Cement Nano Slits""; ""Interpretation of Full Sorption-Desorption Isotherms as a Tool for Understanding Concrete Pore Structure""; ""Multi-scale Hydric Transport in Hardened Cement Pastes and Reference Porous Silicate Materials""; ""Water Isotherms, Shrinkage and Creep of Cement Paste: Hypotheses, Models and Experiments""
""Diffusion Properties of Sodium and Lithium Silicates through Cement Pastes and its Mitigating Effect on Alkali-silica Reaction""""New Experimental Approach to Study Creep and Shrinkage Mechanisms of Concrete on the Nano-scale Level""; ""Infinitesimal Shrinkage as Determined by Inverse Analysis Based on Drying and Shrinkage Tests""; ""Kinetic Simulation of the Logarithmic Creep of Cement""; ""Recent Developments in Durability Mesomechanics of Concrete, Including Cracking via Interface Elements""
""Finite Element Based Characterization of the Creep Properties of the Cement Paste Phases by Coupling Nanoindentation Technique and SEM-EDS""""In-situ Chemo-Mechanical Characterization of Cementitious Microstructures with Coupled X-Ray Microanalysis and Indentation Technique""; ""Micromechanics of Creep and Shrinkage""; ""Efficient Homogenization of Ageing Creep of Random Media: Application to Solidifying Cementitious Materials""; ""Multi-scales Characterization of the Early-age Creep of Concrete""; ""Coupled Damage and Multiscale Creep Model Applied to Cementitious Materials""
""Micromechanical Model of Concrete Creep""
Record Nr. UNINA-9910464954203321
Reston, Virginia : , : American Society of Civil Engineers, , [2013]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microporomechanics / Luc Dormieux, Djimédo Kondo, Franz-Josef Ulm
Microporomechanics / Luc Dormieux, Djimédo Kondo, Franz-Josef Ulm
Autore DORMIEUX, Luc
Pubbl/distr/stampa Chichester : J. Wiley & Sons, copyr. 2006
Descrizione fisica XVI, 328 p. ; 25 cm
Disciplina 620.116
Altri autori (Persone) KONDO, Djimédo
ULM, Franz-Josef
Soggetto topico Materiali porosi
ISBN 0-470-03188-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990006006660203316
DORMIEUX, Luc  
Chichester : J. Wiley & Sons, copyr. 2006
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Microporomechanics [[electronic resource] /] / Luc Dormieux, Djimédo Kondo, Franz-Josef Ulm
Microporomechanics [[electronic resource] /] / Luc Dormieux, Djimédo Kondo, Franz-Josef Ulm
Autore Dormieux Luc
Pubbl/distr/stampa Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006
Descrizione fisica 1 online resource (346 p.)
Disciplina 620.11692
Altri autori (Persone) KondoDjimédo
UlmF.-J (Franz-Josef)
Soggetto topico Porous materials - Mechanical properties
Porous materials - Mechanical properties - Mathematical models
Micromechanics
ISBN 1-280-64883-X
9786610648832
0-470-03200-6
0-470-03199-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Microporomechanics; Contents; Preface; Notation; 1 A Mathematical Framework for Upscaling Operations; 1.1 Representative Elementary Volume (rev); 1.2 Averaging Operations; 1.2.1 Apparent and Intrinsic Averages; 1.2.2 Spatial Derivatives of an Average; 1.2.3 Time Derivative of an Average; 1.2.4 Spatial and Time Derivatives of e; 1.3 Application to Balance Laws; 1.3.1 Mass Balance; 1.3.2 Momentum Balance; 1.4 The Periodic Cell Assumption; 1.4.1 Introduction; 1.4.2 Spatial and Time Derivative of e in the Periodic Case; 1.4.3 Spatial and Time Derivative of e of in the Periodic Case
1.4.4 Application: Micro- versus Macroscopic CompatibilityPart I Modeling of Transport Phenomena; 2 Micro(fluid)mechanics of Darcy's Law; 2.1 Darcy's Law; 2.2 Microscopic Derivation of Darcy's Law; 2.2.1 Thought Model: Viscous Flow in a Cylinder; 2.2.2 Homogenization of the Stokes System; 2.2.3 Lower Bound Estimate of the Permeability Tensor; 2.2.4 Upper Bound Estimate of the Permeability Tensor; 2.3 Training Set: Upper and Lower Bounds of the Permeability of a 2-D Microstructure; 2.3.1 Lower Bound; 2.3.2 Upper Bound; 2.3.3 Comparison
2.4 Generalization: Periodic Homogenization Based on Double-Scale Expansion2.4.1 Double-Scale Expansion Technique; 2.4.2 Extension of Darcy's Law to the Case of Deformable Porous Media; 2.5 Interaction Between Fluid and Solid Phase; 2.5.1 Macroscopic Representation of the Solid-Fluid Interaction; 2.5.2 Microscopic Representation of the Solid-Fluid Interaction; 2.6 Beyond Darcy's (Linear) Law; 2.6.1 Bingham Fluid; 2.6.2 Power-Law Fluids; 2.7 Appendix: Convexity of (d); 3 Micro-to-Macro Diffusive Transport of a Fluid Component; 3.1 Fick's Law
3.2 Diffusion without Advection in Steady State Conditions3.2.1 Periodic Homogenization of Diffusive Properties; 3.2.2 The Tortuosity Tensor; 3.2.3 Variational Approach to Periodic Homogenization; 3.2.4 The Geometrical Meaning of Tortuosity; 3.3 Double-Scale Expansion Technique; 3.3.1 Steady State Diffusion without Advection; 3.3.2 Steady State Diffusion Coupled with Advection; 3.3.3 Transient Conditions; 3.4 Training Set: Multilayer Porous Medium; 3.5 Concluding Remarks; Part II Microporoelasticity; 4 Drained Microelasticity; 4.1 The 1-D Thought Model: The Hollow Sphere
4.1.1 Macroscopic Bulk Modulus and Compressibility4.1.2 Model Extension to the Cavity; 4.1.3 Energy Point of View; 4.1.4 Displacement Boundary Conditions; 4.2 Generalization; 4.2.1 Macroscopic and Microscopic Scales; 4.2.2 Formulation of the Local Problem on the rev; 4.2.3 Uniform Stress Boundary Condition; 4.2.4 An Instructive Exercise: Capillary Pressure Effect; 4.2.5 Uniform Strain Boundary Condition; 4.2.6 The Hill Lemma; 4.2.7 The Homogenized Compliance Tensor and Stress Concentration
4.2.8 An Instructive Exercise: Example of an rev for an Isotropic Porous Medium. Hashin's Composite Sphere Assemblage
Record Nr. UNINA-9910143590403321
Dormieux Luc  
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microporomechanics [[electronic resource] /] / Luc Dormieux, Djimédo Kondo, Franz-Josef Ulm
Microporomechanics [[electronic resource] /] / Luc Dormieux, Djimédo Kondo, Franz-Josef Ulm
Autore Dormieux Luc
Pubbl/distr/stampa Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006
Descrizione fisica 1 online resource (346 p.)
Disciplina 620.11692
Altri autori (Persone) KondoDjimédo
UlmF.-J (Franz-Josef)
Soggetto topico Porous materials - Mechanical properties
Porous materials - Mechanical properties - Mathematical models
Micromechanics
ISBN 1-280-64883-X
9786610648832
0-470-03200-6
0-470-03199-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Microporomechanics; Contents; Preface; Notation; 1 A Mathematical Framework for Upscaling Operations; 1.1 Representative Elementary Volume (rev); 1.2 Averaging Operations; 1.2.1 Apparent and Intrinsic Averages; 1.2.2 Spatial Derivatives of an Average; 1.2.3 Time Derivative of an Average; 1.2.4 Spatial and Time Derivatives of e; 1.3 Application to Balance Laws; 1.3.1 Mass Balance; 1.3.2 Momentum Balance; 1.4 The Periodic Cell Assumption; 1.4.1 Introduction; 1.4.2 Spatial and Time Derivative of e in the Periodic Case; 1.4.3 Spatial and Time Derivative of e of in the Periodic Case
1.4.4 Application: Micro- versus Macroscopic CompatibilityPart I Modeling of Transport Phenomena; 2 Micro(fluid)mechanics of Darcy's Law; 2.1 Darcy's Law; 2.2 Microscopic Derivation of Darcy's Law; 2.2.1 Thought Model: Viscous Flow in a Cylinder; 2.2.2 Homogenization of the Stokes System; 2.2.3 Lower Bound Estimate of the Permeability Tensor; 2.2.4 Upper Bound Estimate of the Permeability Tensor; 2.3 Training Set: Upper and Lower Bounds of the Permeability of a 2-D Microstructure; 2.3.1 Lower Bound; 2.3.2 Upper Bound; 2.3.3 Comparison
2.4 Generalization: Periodic Homogenization Based on Double-Scale Expansion2.4.1 Double-Scale Expansion Technique; 2.4.2 Extension of Darcy's Law to the Case of Deformable Porous Media; 2.5 Interaction Between Fluid and Solid Phase; 2.5.1 Macroscopic Representation of the Solid-Fluid Interaction; 2.5.2 Microscopic Representation of the Solid-Fluid Interaction; 2.6 Beyond Darcy's (Linear) Law; 2.6.1 Bingham Fluid; 2.6.2 Power-Law Fluids; 2.7 Appendix: Convexity of (d); 3 Micro-to-Macro Diffusive Transport of a Fluid Component; 3.1 Fick's Law
3.2 Diffusion without Advection in Steady State Conditions3.2.1 Periodic Homogenization of Diffusive Properties; 3.2.2 The Tortuosity Tensor; 3.2.3 Variational Approach to Periodic Homogenization; 3.2.4 The Geometrical Meaning of Tortuosity; 3.3 Double-Scale Expansion Technique; 3.3.1 Steady State Diffusion without Advection; 3.3.2 Steady State Diffusion Coupled with Advection; 3.3.3 Transient Conditions; 3.4 Training Set: Multilayer Porous Medium; 3.5 Concluding Remarks; Part II Microporoelasticity; 4 Drained Microelasticity; 4.1 The 1-D Thought Model: The Hollow Sphere
4.1.1 Macroscopic Bulk Modulus and Compressibility4.1.2 Model Extension to the Cavity; 4.1.3 Energy Point of View; 4.1.4 Displacement Boundary Conditions; 4.2 Generalization; 4.2.1 Macroscopic and Microscopic Scales; 4.2.2 Formulation of the Local Problem on the rev; 4.2.3 Uniform Stress Boundary Condition; 4.2.4 An Instructive Exercise: Capillary Pressure Effect; 4.2.5 Uniform Strain Boundary Condition; 4.2.6 The Hill Lemma; 4.2.7 The Homogenized Compliance Tensor and Stress Concentration
4.2.8 An Instructive Exercise: Example of an rev for an Isotropic Porous Medium. Hashin's Composite Sphere Assemblage
Record Nr. UNISA-996211213803316
Dormieux Luc  
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Microporomechanics [[electronic resource] /] / Luc Dormieux, Djimédo Kondo, Franz-Josef Ulm
Microporomechanics [[electronic resource] /] / Luc Dormieux, Djimédo Kondo, Franz-Josef Ulm
Autore Dormieux Luc
Pubbl/distr/stampa Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006
Descrizione fisica 1 online resource (346 p.)
Disciplina 620.11692
Altri autori (Persone) KondoDjimédo
UlmF.-J (Franz-Josef)
Soggetto topico Porous materials - Mechanical properties
Porous materials - Mechanical properties - Mathematical models
Micromechanics
ISBN 1-280-64883-X
9786610648832
0-470-03200-6
0-470-03199-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Microporomechanics; Contents; Preface; Notation; 1 A Mathematical Framework for Upscaling Operations; 1.1 Representative Elementary Volume (rev); 1.2 Averaging Operations; 1.2.1 Apparent and Intrinsic Averages; 1.2.2 Spatial Derivatives of an Average; 1.2.3 Time Derivative of an Average; 1.2.4 Spatial and Time Derivatives of e; 1.3 Application to Balance Laws; 1.3.1 Mass Balance; 1.3.2 Momentum Balance; 1.4 The Periodic Cell Assumption; 1.4.1 Introduction; 1.4.2 Spatial and Time Derivative of e in the Periodic Case; 1.4.3 Spatial and Time Derivative of e of in the Periodic Case
1.4.4 Application: Micro- versus Macroscopic CompatibilityPart I Modeling of Transport Phenomena; 2 Micro(fluid)mechanics of Darcy's Law; 2.1 Darcy's Law; 2.2 Microscopic Derivation of Darcy's Law; 2.2.1 Thought Model: Viscous Flow in a Cylinder; 2.2.2 Homogenization of the Stokes System; 2.2.3 Lower Bound Estimate of the Permeability Tensor; 2.2.4 Upper Bound Estimate of the Permeability Tensor; 2.3 Training Set: Upper and Lower Bounds of the Permeability of a 2-D Microstructure; 2.3.1 Lower Bound; 2.3.2 Upper Bound; 2.3.3 Comparison
2.4 Generalization: Periodic Homogenization Based on Double-Scale Expansion2.4.1 Double-Scale Expansion Technique; 2.4.2 Extension of Darcy's Law to the Case of Deformable Porous Media; 2.5 Interaction Between Fluid and Solid Phase; 2.5.1 Macroscopic Representation of the Solid-Fluid Interaction; 2.5.2 Microscopic Representation of the Solid-Fluid Interaction; 2.6 Beyond Darcy's (Linear) Law; 2.6.1 Bingham Fluid; 2.6.2 Power-Law Fluids; 2.7 Appendix: Convexity of (d); 3 Micro-to-Macro Diffusive Transport of a Fluid Component; 3.1 Fick's Law
3.2 Diffusion without Advection in Steady State Conditions3.2.1 Periodic Homogenization of Diffusive Properties; 3.2.2 The Tortuosity Tensor; 3.2.3 Variational Approach to Periodic Homogenization; 3.2.4 The Geometrical Meaning of Tortuosity; 3.3 Double-Scale Expansion Technique; 3.3.1 Steady State Diffusion without Advection; 3.3.2 Steady State Diffusion Coupled with Advection; 3.3.3 Transient Conditions; 3.4 Training Set: Multilayer Porous Medium; 3.5 Concluding Remarks; Part II Microporoelasticity; 4 Drained Microelasticity; 4.1 The 1-D Thought Model: The Hollow Sphere
4.1.1 Macroscopic Bulk Modulus and Compressibility4.1.2 Model Extension to the Cavity; 4.1.3 Energy Point of View; 4.1.4 Displacement Boundary Conditions; 4.2 Generalization; 4.2.1 Macroscopic and Microscopic Scales; 4.2.2 Formulation of the Local Problem on the rev; 4.2.3 Uniform Stress Boundary Condition; 4.2.4 An Instructive Exercise: Capillary Pressure Effect; 4.2.5 Uniform Strain Boundary Condition; 4.2.6 The Hill Lemma; 4.2.7 The Homogenized Compliance Tensor and Stress Concentration
4.2.8 An Instructive Exercise: Example of an rev for an Isotropic Porous Medium. Hashin's Composite Sphere Assemblage
Record Nr. UNINA-9910829998503321
Dormieux Luc  
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microporomechanics [[electronic resource] /] / Luc Dormieux, Djimédo Kondo, Franz-Josef Ulm
Microporomechanics [[electronic resource] /] / Luc Dormieux, Djimédo Kondo, Franz-Josef Ulm
Autore Dormieux Luc
Pubbl/distr/stampa Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006
Descrizione fisica 1 online resource (346 p.)
Disciplina 620.11692
Altri autori (Persone) KondoDjimédo
UlmF.-J (Franz-Josef)
Soggetto topico Porous materials - Mechanical properties
Porous materials - Mechanical properties - Mathematical models
Micromechanics
ISBN 1-280-64883-X
9786610648832
0-470-03200-6
0-470-03199-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Microporomechanics; Contents; Preface; Notation; 1 A Mathematical Framework for Upscaling Operations; 1.1 Representative Elementary Volume (rev); 1.2 Averaging Operations; 1.2.1 Apparent and Intrinsic Averages; 1.2.2 Spatial Derivatives of an Average; 1.2.3 Time Derivative of an Average; 1.2.4 Spatial and Time Derivatives of e; 1.3 Application to Balance Laws; 1.3.1 Mass Balance; 1.3.2 Momentum Balance; 1.4 The Periodic Cell Assumption; 1.4.1 Introduction; 1.4.2 Spatial and Time Derivative of e in the Periodic Case; 1.4.3 Spatial and Time Derivative of e of in the Periodic Case
1.4.4 Application: Micro- versus Macroscopic CompatibilityPart I Modeling of Transport Phenomena; 2 Micro(fluid)mechanics of Darcy's Law; 2.1 Darcy's Law; 2.2 Microscopic Derivation of Darcy's Law; 2.2.1 Thought Model: Viscous Flow in a Cylinder; 2.2.2 Homogenization of the Stokes System; 2.2.3 Lower Bound Estimate of the Permeability Tensor; 2.2.4 Upper Bound Estimate of the Permeability Tensor; 2.3 Training Set: Upper and Lower Bounds of the Permeability of a 2-D Microstructure; 2.3.1 Lower Bound; 2.3.2 Upper Bound; 2.3.3 Comparison
2.4 Generalization: Periodic Homogenization Based on Double-Scale Expansion2.4.1 Double-Scale Expansion Technique; 2.4.2 Extension of Darcy's Law to the Case of Deformable Porous Media; 2.5 Interaction Between Fluid and Solid Phase; 2.5.1 Macroscopic Representation of the Solid-Fluid Interaction; 2.5.2 Microscopic Representation of the Solid-Fluid Interaction; 2.6 Beyond Darcy's (Linear) Law; 2.6.1 Bingham Fluid; 2.6.2 Power-Law Fluids; 2.7 Appendix: Convexity of (d); 3 Micro-to-Macro Diffusive Transport of a Fluid Component; 3.1 Fick's Law
3.2 Diffusion without Advection in Steady State Conditions3.2.1 Periodic Homogenization of Diffusive Properties; 3.2.2 The Tortuosity Tensor; 3.2.3 Variational Approach to Periodic Homogenization; 3.2.4 The Geometrical Meaning of Tortuosity; 3.3 Double-Scale Expansion Technique; 3.3.1 Steady State Diffusion without Advection; 3.3.2 Steady State Diffusion Coupled with Advection; 3.3.3 Transient Conditions; 3.4 Training Set: Multilayer Porous Medium; 3.5 Concluding Remarks; Part II Microporoelasticity; 4 Drained Microelasticity; 4.1 The 1-D Thought Model: The Hollow Sphere
4.1.1 Macroscopic Bulk Modulus and Compressibility4.1.2 Model Extension to the Cavity; 4.1.3 Energy Point of View; 4.1.4 Displacement Boundary Conditions; 4.2 Generalization; 4.2.1 Macroscopic and Microscopic Scales; 4.2.2 Formulation of the Local Problem on the rev; 4.2.3 Uniform Stress Boundary Condition; 4.2.4 An Instructive Exercise: Capillary Pressure Effect; 4.2.5 Uniform Strain Boundary Condition; 4.2.6 The Hill Lemma; 4.2.7 The Homogenized Compliance Tensor and Stress Concentration
4.2.8 An Instructive Exercise: Example of an rev for an Isotropic Porous Medium. Hashin's Composite Sphere Assemblage
Record Nr. UNINA-9910841359903321
Dormieux Luc  
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui